Hydraulic pressure balance
Model CPB5800

Applications

- Primary standard for calibrating the pressure scale in a hydraulic range up to 1,400 bar (20,000 psi)
- Reference instrument for factory and calibration laboratories for the testing, adjustment and calibration of pressure measuring instruments
- Complete, stand-alone system, also suitable for on-site use

Special features

- Total measurement uncertainty to 0.006 % of reading
- Extremely flexible instrument with a wide range of single and dual-range piston-cylinder systems
- Dual-range piston-cylinder systems with fully automated changing between ranges
- Factory calibration included as standard, traceable to national standards, with UKAS calibration possible as an option
- Fast and safe replacement of the piston-cylinder system via patented ConTect quick-release system as an option

Description

Proven primary standard
Pressure balances (dead-weight testers) are the most accurate instruments available on the market for the calibration of electronic or mechanical pressure measuring instruments. The direct measurement of the pressure \(p = \frac{F}{A} \), as well as the use of high-quality materials enable a very small measurement uncertainty, in conjunction with an excellent long-term stability.

The pressure balance (dead-weight tester) has therefore been used for years in factory and calibration laboratories in industry, national institutes and research laboratories.

Stand-alone operation
Due to its integrated pressure generation and the purely mechanical measuring principle, the model CPB5800 is ideal for on-site use for maintenance and service.

Basic principle
Pressure is defined as the quotient of force and area. The core component of the CPB5800 is therefore a very precisely manufactured piston-cylinder system, onto which a mass load is applied in order to generate the individual test points.

The mass load is proportional to the target pressure and this is achieved through optimally graduated masses. As standard, these masses are manufactured to the standard gravity (9.80665 m/s²), though they can be adjusted to a specific location and also UKAS calibrated.
The instrument base model CPB5800

Easy operation
In the stable instrument base, the integrated priming pump and the 250 ml tank enable large test volumes to be easily filled and pressurised. For further pressure increases and fine adjustment, a very precisely controllable spindle pump is fitted, which only runs within the pump body.

As soon as the measuring system reaches equilibrium, there is a balance of forces between the pressure and the masses applied. The excellent quality of the system ensures that this pressure remains stable over several minutes, so that the pressure value for comparative measurements can be read without any problems, or also so that more complex adjustments can be carried out on the test item.

High-performance instrument range
The CPB5800 instrument bases are available in 2 variants:

■ Standard hydraulic base
 - up to max. 1,200 bar (16,000 psi)
 - with integrated pressure generation through priming pump and spindle pump
 - Pressure transmission medium
 Standard: Mineral oil
 Optional: Sebacate oil, brake fluid, Skydrol or Fomblin oil

■ Hydraulic high-pressure base
 - up to max. 1,400 bar (20,000 psi)
 - with integrated pressure generation through priming pump and spindle pump
 - Pressure transmission medium mineral oil or Sebacate oil

As standard, both instrument bases are fitted with a connection for the model CPS5800 piston-cylinder system with G ⅜ male thread.

As an option a M30 x 2 female thread for optional CPS5000 piston-cylinder systems is available.

With the 1,200 bar instrument base (16,000 psi instrument base), the patented ConTect quick-release mechanism is available as an option. This enables the piston-cylinder system to be changed quickly and safely without any tools. The connection of the test item is made without tools using a quick connector. Via the freely rotating knurled nut, the test item can be oriented as required. As standard, a threaded insert with a G ½ female thread is provided. Other threaded inserts are available to connect the most common pressure measuring instruments.

Test item connection

1. Oil collecting tray
2. Temperature sensor, optional
3. Threaded insert, changeable
4. O-ring 8 x 2
5. Quick connector with knurled nut
The piston-cylinder system model CPS5800

The CPS5800 piston-cylinder systems are available in two fundamentally different designs, depending on the measuring range:

- Single-range piston-cylinder system (for measuring ranges 120 bar and 300 bar) (1,600 and 4,000 psi)
- Dual-range piston-cylinder system (for measuring ranges 700 bar, 1,200 bar and 1,400 bar) (10,000, 16,000 and 20,000 psi)

High accuracy over a wide measuring range
The dual-range piston-cylinder system offers two measuring ranges in one case with automatic measuring range switching from low-pressure to high-pressure piston. This provides the user with an extremely flexible measuring instrument that can cover a wide measuring range with high accuracy, with only one piston-cylinder system and one mass set. Furthermore, two test points can automatically be achieved by loading just the one mass.

Both the piston and cylinder are manufactured from hardened steel or tungsten carbide, respectively. These pairings of materials have very low pressure and temperature coefficients of expansion, which results in a very good linearity for the effective area of the piston and a very high accuracy.

Piston and cylinder are very well protected, against contact, impacts or contamination from outside, in a solid stainless-steel/hardened tool steel case. At the same time, overpressure protection is integrated, which prevents the piston from being forced out vertically and avoids damage to the piston-cylinder system in the event of masses removal under pressure.

The masses are stacked directly onto the piston shaft. This makes it easier to place the masses on and thus enables a lower start value.

The overall design of the piston-cylinder system and the very precise manufacturing of both the piston and the cylinder, ensure exceptionally low friction force, which results in excellent operating characteristics with long free-rotation time and low sink rates. Thus a high long-term stability is ensured.

Therefore, the recommended recalibration interval is two to five years dependent on the conditions of use.

As an option the model CPS5000 hydraulic piston-cylinder systems are available.
For detailed specifications see data sheet CT 31.01.
The mass set, model CPM5800

The mass set is supplied in a wooden case with a foam insert. This includes the masses listed in the tables of masses below, made from non-magnetic stainless steel, and optimised for everyday use.

For finer increments and for a higher resolution, as an option, the standard mass sets can be extended by a set of fine increment masses.

If even smaller intermediate values need to be generated, using one of the class M1 or F1 set of fine increment masses from the accessories is recommended.

As an option for the CPS5000 piston-cylinder systems CPM5000 mass sets are available. For detailed specifications see data sheet CT 31.01.

Tables of masses

The following tables show the number of masses within a mass set with their nominal mass values and the resulting nominal pressures for the respective measuring ranges. Should the instrument not be operated under reference conditions (ambient temperature 20 °C (68 °F), atmospheric pressure 1,013 mbar (14.69 psi), relative humidity 40 %), the measured values must be corrected arithmetically. For the measurement of the ambient conditions, the CPU6000 CalibratorUnit can be used, see page 11.

Measuring range [bar] or [kg/cm²]

<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Single-piston measuring ranges</th>
<th>Dual-piston measuring ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>[bar] or [kg/cm²]</td>
<td>1 ... 120</td>
<td>2 ... 300</td>
</tr>
<tr>
<td>Piston and make-up weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Nominal pressure per piece [bar]</th>
<th>Quantity</th>
<th>Nominal pressure per piece [kg/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston and make-up weight</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Standard mass set</td>
<td>4</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Set of fine increment masses (optional)</td>
<td>1</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.04</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.02</td>
<td>1</td>
</tr>
</tbody>
</table>
Measuring range [psi] or [lb/in²]

<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Single-piston measuring ranges</th>
<th>Dual-piston measuring ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 ... 1,600</td>
<td>10 ... 10,000</td>
</tr>
<tr>
<td></td>
<td>30 ... 4,000</td>
<td>10 ... 10,000</td>
</tr>
<tr>
<td></td>
<td>10 ... 800</td>
<td>200 ... 16,000</td>
</tr>
<tr>
<td></td>
<td>10 ... 800</td>
<td>200 ... 20,000</td>
</tr>
<tr>
<td>Piston</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston and make-up weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard mass set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of fine increment masses (optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 100 ... 12,000 | 200 ... 30,000 |

Measuring range [kPa]

<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Single-piston measuring ranges</th>
<th>Dual-piston measuring ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 ... 12,000</td>
<td>100 ... 70,000</td>
</tr>
<tr>
<td></td>
<td>200 ... 120,000</td>
<td>100 ... 140,000</td>
</tr>
<tr>
<td>Piston and make-up weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard mass set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of fine increment masses (optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 100 ... 6,000 | 1,000 ... 70,000 | 100 ... 6,000 | 1,000 ... 120,000 | 100 ... 6,000 | 1,000 ... 140,000 |

| 100 ... 6,000 | 2,000 ... 120,000 | 100 ... 6,000 | 2,000 ... 140,000 |

Pressurization

- **Single-piston measuring ranges**
 - Piston
 - Piston and make-up weight
 - Standard mass set
 - Set of fine increment masses (optional)

- **Dual-piston measuring ranges**
 - Piston
 - Piston and make-up weight
 - Standard mass set
 - Set of fine increment masses (optional)
Specifications

Model CPB5800

Piston-cylinder systems model CPS5800

<table>
<thead>
<tr>
<th>Version</th>
<th>Single-piston measuring ranges</th>
<th>Dual-piston measuring ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring ranges in bar, kg/cm²</td>
<td>1 … 120</td>
<td>1 … 60 / 10 … 700</td>
</tr>
<tr>
<td>Required masses in kg</td>
<td>49.7</td>
<td>57.4</td>
</tr>
<tr>
<td>Smallest step in bar, kg/cm²</td>
<td>0.5</td>
<td>0.02</td>
</tr>
<tr>
<td>Smallest step in kg/cm²</td>
<td>0.01 / 0.1</td>
<td>0.01 / 0.2</td>
</tr>
<tr>
<td>Nominal effective area of the piston in cm²</td>
<td>0.4032</td>
<td>0.8065 / 0.0807</td>
</tr>
<tr>
<td>Measuring ranges in psi, lb/in²</td>
<td>10 … 1,600</td>
<td>10 … 800 / 100 … 1,600</td>
</tr>
<tr>
<td>Required masses in kg</td>
<td>45.5</td>
<td>56.4</td>
</tr>
<tr>
<td>Smallest step in psi, lb/in²</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Smallest step in kg/cm²</td>
<td>0.1 / 1</td>
<td>0.1 / 2</td>
</tr>
<tr>
<td>Nominal effective area of the piston in cm²</td>
<td>0.4032</td>
<td>0.8065 / 0.0807</td>
</tr>
<tr>
<td>Measuring ranges in kPa</td>
<td>100 … 12,000</td>
<td>100 … 6,000 / 1,000 … 70,000</td>
</tr>
<tr>
<td>Required masses in kg</td>
<td>49.7</td>
<td>57.4</td>
</tr>
<tr>
<td>Smallest step in kPa</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Smallest step in kg/cm²</td>
<td>1 / 10</td>
<td>1 / 20</td>
</tr>
<tr>
<td>Nominal effective area of the piston in cm²</td>
<td>0.4032</td>
<td>0.8065 / 0.0807</td>
</tr>
</tbody>
</table>

Accuracies

- Standard: 0.015 % of reading, 0.025 % of reading
- Premium: 0.007 % of reading, 0.006 % of reading, 0.007 % of reading

Pressure transmission medium

- Standard: Hydraulic fluid based on VG22 mineral oil
- Optional: Sebacate oil, Brake fluid, Skydrol, Fomblin oil, Sebacate oil

Material

- Piston: Steel, Tungsten carbide / steel
- Cylinder: Bronze, Steel, Steel / tungsten carbide
- Mass set: Stainless steel, non-magnetic

1) Theoretical starting value; corresponds to the pressure value generated by the piston or the piston and its make-up weight (by their own weight). To optimise the operating characteristics more masses should be loaded.

2) The smallest pressure change value that can be achieved based on the standard mass set. To reduce this, a set of fine increment masses is also available.

3) The smallest pressure change value that can be achieved based on the optional set of fine increment masses. For further reductions, an accessory of class M1 or F1 set of fine increment masses is available.

4) The accuracy from 10 % of the measuring range is based on the measured value. In the lower range, the accuracy is 0.03 % of reading for the single-range piston-cylinder systems and 0.025 % of reading for dual-range piston-cylinder systems.

5) Measurement uncertainty assuming reference conditions (ambient temperature 20 °C (68 °F), atmospheric pressure 1,013 mbar (14.69 psi), relative humidity 40 %). For operation without a CalibratorUnit, corrections must be made if required.

6) Not available with UKAS area and mass calibration.

7) Requires UKAS area and mass calibration.
Piston-cylinder systems model CPS5800

<table>
<thead>
<tr>
<th>Version</th>
<th>Single-piston measuring ranges</th>
<th>Dual-piston measuring ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston-cylinder system</td>
<td>1 kg (2.2 lbs)</td>
<td>2 kg (4.4 lbs)</td>
</tr>
<tr>
<td>Storage case for the piston-cylinder system</td>
<td>3.1 kg (6.8 lbs)</td>
<td></td>
</tr>
<tr>
<td>bar standard mass sets (in 2 wooden cases)</td>
<td>61.3 kg (135.2 lbs)</td>
<td>69 kg (152.1 lbs)</td>
</tr>
<tr>
<td>psi standard mass sets (in 2 wooden cases)</td>
<td>57.1 kg (125.9 lbs)</td>
<td>68 kg (149.9 lbs)</td>
</tr>
<tr>
<td>bar set of fine increment masses</td>
<td>0.33 kg (0.73 lbs)</td>
<td></td>
</tr>
<tr>
<td>psi set of fine increment masses</td>
<td>0.23 kg (0.51 lbs)</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions (W x D x H)

- Carrying case for standard mass sets: 400 x 310 x 310 mm (15.7 x 12.2 x 12.2 in)
- Storage case for the piston-cylinder system (optional): 300 x 265 x 205 mm (11.8 x 10.4 x 8.1 in)

Base, model CPB5800

Base version

- Hydraulic standard: up to max. 1,200 bar (16,000 psi); with internal pressure generation
- Hydraulic high pressure: up to max. 1,400 bar (20,000 psi); with internal pressure generation

Pressure transmission medium

- Standard: Hydraulic fluid based on VG22 mineral oil
- Optional: Sebacate oil, brake fluid, Skydrol or Fomblin oil (dependent on measuring range)
- Reservoir: 250 cm³

Connections

- Connection for piston-cylinder system: G ¼ male / optional: ConTect quick-release connector (not for 1,400 bar version (20,000 psi version))
- Test item connection: G ½ B female threaded quick-connectors, freely rotating, exchangeable for other threaded inserts, see Accessories

Material

- Piping in base: 1.4404 stainless steel, 6 x 2 mm

Weight

- Standard hydraulic base: 18.0 kg / 19.0 kg (39.7 lbs / 41.9 lbs) (incl. optional ConTect quick-release connector)
- Hydraulic high-pressure base: 18.0 kg (39.7 lbs)
- Storage case for the base: 8.5 kg (18.7 lbs)

Permissible ambient conditions

- Operating temperature: 18 ... 28 °C (64 ... 82 °F)

Dimensions (W x D x H)

- Base: 401 x 375 x 265 mm (15.7 x 14.8 x 10.4 in), for details, see technical drawings
Approvals

<table>
<thead>
<tr>
<th>Logo</th>
<th>Description</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>☺</td>
<td>EC declaration of conformity</td>
<td>European Community</td>
</tr>
<tr>
<td>☺</td>
<td>Pressure equipment directive</td>
<td></td>
</tr>
<tr>
<td>☺</td>
<td>GOST Metrology, measurement technology</td>
<td>Russia</td>
</tr>
<tr>
<td>☺</td>
<td>MTSCHS Permission for commissioning</td>
<td>Kazakhstan</td>
</tr>
</tbody>
</table>

Certificates

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Calibration</th>
<th>Option: UKAS calibration certificate 1) 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended recalibration interval</td>
<td>2 to 3 years (dependent on conditions of use)</td>
<td></td>
</tr>
</tbody>
</table>

1) For standard accuracy UKAS calibration certificate only available as pressure calibration.
2) Premium accuracy requires UKAS area and mass calibration.

Approvals and certificates, see website

Transport dimensions for complete instrument

The complete instrument, in its standard version and standard scope of delivery, consists of 3 packages on a single pallet. The dimensions are 1,200 x 800 x 500 mm (47.2 x 31.5 x 19.7 in). The overall weight is dependent on the measuring range.

<table>
<thead>
<tr>
<th>Version in bar</th>
<th>Weight</th>
<th>net</th>
<th>gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-piston measuring ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 … 120 bar</td>
<td>81.5 kg (179.7 lbs)</td>
<td>100 kg (220.5 lbs)</td>
<td></td>
</tr>
<tr>
<td>2 … 300 bar</td>
<td>81.5 kg (179.7 lbs)</td>
<td>100 kg (220.5 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dual-piston measuring ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 … 60 bar / 10 … 700 bar</td>
<td>90 kg (195.5 lbs)</td>
<td>108.5 kg (239.2 lbs)</td>
<td></td>
</tr>
<tr>
<td>1 … 60 bar / 20 … 1,200 bar</td>
<td>82 kg (180.8 lbs)</td>
<td>100.5 kg (221.6 lbs)</td>
<td></td>
</tr>
<tr>
<td>1 … 60 bar / 20 … 1,400 bar</td>
<td>90 kg (195.5 lbs)</td>
<td>108.5 kg (239.2 lbs)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version in psi</th>
<th>Weight</th>
<th>net</th>
<th>gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-piston measuring ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 … 1,600 psi</td>
<td>77.5 kg (170.9 lbs)</td>
<td>96 kg (211.7 lbs)</td>
<td></td>
</tr>
<tr>
<td>30 … 4,000 psi</td>
<td>77 kg (169.8 lbs)</td>
<td>95.5 kg (210.6 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dual-piston measuring ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 … 800 psi / 100 … 10,000 psi</td>
<td>89 kg (196.2 lbs)</td>
<td>107.5 kg (237.0 lbs)</td>
<td></td>
</tr>
<tr>
<td>10 … 800 psi / 200 … 16,000 psi</td>
<td>77.5 kg (170.9 lbs)</td>
<td>96 kg (211.7 lbs)</td>
<td></td>
</tr>
<tr>
<td>10 … 800 psi / 200 … 20,000 psi</td>
<td>89 kg (196.2 lbs)</td>
<td>107.5 kg (237.0 lbs)</td>
<td></td>
</tr>
</tbody>
</table>
Dimensions in mm (in)

The picture shows a 1,200 bar version (16,000 psi version) of the CPB5800 instrument base with the ConTect quick-release connector option.
The 1,400 bar high-pressure version (20,000 psi high-pressure version) does not differ from it dimensionally, only in the arrangement of the control elements.

Front view

Side view (left)

Top view

Detailed section view

1,400 bar high-pressure version (20,000 psi high-pressure version)

- with high-pressure shut-off valve
- no ConTect quick-release connector possible

Dimensions are identical.

1. Connector for piston-cylinder system
2. Priming pump
3. Outlet valve
4. Spindle pump with star handle, removable
5. Rotatable feet
6. Test item connection
7. Level
8. Oil reservoir plug screw
Accessories

Set of fine increment masses M1 and F1
The masses included in the standard scope of delivery are ideally suited for everyday use. If even smaller intermediate values need to be generated, using one of the class M1 or F1 set of fine increment masses with the following masses is recommended:

1 x 50 g, 2 x 20 g, 1 x 10 g, 1 x 5 g, 2 x 2 g, 1 x 1 g, 1 x 500 mg, 2 x 200 mg, 1 x 100 mg, 1 x 50 mg, 2 x 20 mg, 1 x 10 mg, 1 x 5 mg, 2 x 2 mg, 1 x 1 mg

Adapter sets for quick connector
As a standard, the pressure balance (dead-weight tester) is equipped with a quick connector for connecting the test item. For this purpose, the following threaded inserts, which can be easily changed, are available:

- Adapter set: G ¼, G ⅜, ½ NPT, ¼ NPT and M20 x 1.5
- Adapter set NPT: ¼ NPT, ½ NPT, ¾ NPT and ½ NPT

Additionally, the adapter sets include spare O-rings as well as a spanner with SW32 flats and SW14 flats, for changing the adapters. Other threaded inserts are available on request.

Separators
The separators have been specifically designed for measuring instruments, which should not come into contact with the medium of the pressure balance (dead-weight tester) or to protect the pressure balance (dead-weight tester) against contamination from the test items.

Designation/Version	Order number
Set of fine increment masses (1 mg up to 50 g), class F1 | 7093874
Set of fine increment masses (1 mg up to 50 g), class M1 | 14025325
Adapter set for quick connector in case with G ¼, G ⅜, ½ NPT, ¼ NPT and M20 x 1.5 threaded inserts for insertion in the knurled nut on the test item connector | 2036941
Adapter set “NPT” for quick connector in case with ¼ NPT, ½ NPT, ¾ NPT and ½ NPT threaded inserts for insertion in the knurled nut on the test item connector | 12563626
90° angle connection, for test items with back mounting connection | 1564838
Separator (without diaphragm), max. 1,000 bar (14,500 psi) | 1565389
Separator (to separate two liquid media by a diaphragm), max. 700 bar (10,000 psi) | 14031253
Separator (to separate two liquid media by a diaphragm), max. 1,200 bar (16,000 psi) | 14031254
O-ring set consisting of 5 pcs. 8 x 2 and 5 pcs. 4 x 2.2 | 12328562
Operating fluid for CPB series up to max. 4,000 bar (60,000 psi), 1 litre | 2099882
Adapter for mounting model CPS5800 hydraulic piston-cylinder systems into a ConTect system mechanism | 14031252
Test item connection, G ¾ female to G ½ female, rotating, operation as a comparison test pump is possible | 14031251
Special test-item adapter with quick connector, for the matching to the ConTect system mechanism, operation as a comparison test pump is possible | 2152634
Electrical piston drive unit for measuring ranges 700 bar, 1,200 bar and 1,400 bar (10,000 psi, 16,000 psi and 20,000 psi) (230 V AC/50 Hz) | 14031260
The models of the CPU6000 series are compact tools for use with a pressure balance (dead-weight tester). In particular when highly accurate measuring values, with measurement uncertainties of less than 0.025 %, are required, complicated mathematical calculations and corrections are necessary. With the CPU6000 in combination with the CPB-CAL (iPad® app) and/or WIKA-CAL (PC software) all critical ambient parameters can be registered and automatically corrected.

The CPU6000 series is made up of three instruments

Weather station, model CPU6000-W
The CPU6000-W provides measured values such as atmospheric pressure, relative humidity and the ambient temperature of the laboratory environment.

Pressure balance sensor box, model CPU6000-S
The CPU6000-S measures the piston temperature and displays the floating position of the masses.

Digital multimeter, model CPU6000-M
The CPU6000-M fulfils the function of a digital multimeter and power supply unit when electronic pressure transmitters must be calibrated.

Typical application

CPB-CAL iPad® app
The iPad® application calculates the masses for pressure balances (dead-weight testers) or the reference pressure while taking the measured parameters from the CPU6000 into account. The conversion can be carried out in all common pressure units. As an additional parameter, the local gravity can be given for location-independent measurements.

WIKA-CAL PC software - Weight calculator
With the demo version of the WIKA-CAL software and a CPB series pressure balance (dead-weight tester), the masses to be applied and the corresponding reference pressure can be determined. The pressure balance data (dead-weight tester data) can be entered into the database manually or imported automatically via an XML file available online.

All ambient parameters and piston temperature can be entered manually into WIKA-CAL or can be measured automatically with the CPU6000 series, so that the highest accuracy can be achieved. WIKA-CAL demo version can be downloaded free of charge from the WIKA website.

Further specifications on the CPU6000 series can be found in data sheet CT 35.02.
For details of the WIKA-CAL calibration software see data sheet CT 95.10.
Further pressure balances (dead-weight testers) within our calibration technology programme

Dead-weight tester in compact design, model CPB3800

Measuring ranges:
Hydraulic 1 ... 120 to 10 ... 1,200 bar
(10 ... 1,600 to 100 ... 16,000 psi)
Accuracy: 0.05 % of reading
0.025 % of reading (optional)

For specifications see data sheet CT 31.06

Pneumatic pressure balance, model CPB5000

Measuring ranges:
Pneumatic -0.03 ... -1 to +0.4 ... +100 bar
(-0.435 ... -14 to +5.8 ... +1,500 psi)
Accuracy: 0.015 % of reading
0.008 % of reading (optional)

For specifications see data sheet CT 31.01

Pressure balance for high pressure, model CPB5000HP

Measuring ranges:
Hydraulic 25 ... 2,500, 25 ... 4,000 or
25 ... 5,000 bar
(350 ... 40,000, 350 ... 60,000 or
350 ... 70,000 psi)
Accuracy: 0.025 % of reading
0.02 % of reading (optional)

For specifications see data sheet CT 31.51

Pressure balance for differential pressure, model CPB5600DP

Measuring ranges (= static pressure + differential pressure):
Pneumatic 0.03 ... 2 to 0.4 ... 100 bar
(0.435 ... 30 to 5.8 ... 1,500 psi)
Hydraulic 0.2 ... 60 to 25 ... 1,600 bar
(2.9 ... 1,000 to 350 ... 23,200 psi)
Accuracy: 0.015 % of reading
0.008 % of reading (optional)

For specifications see data sheet CT 31.56
Scope of delivery

- Pressure balance CPB5800
- Priming pump
- Spindle pump for filling, pressure generation and fine adjustment
- Piston connection with G ¾ male thread
- Quick connector for test items with G ½ female threaded insert, changeable
- Piston-cylinder system
- Standard mass sets in carrying case
- Masses, manufactured to local gravity (standard value: 9.80665 m/s²)
- VG22 mineral oil (1.0 litre)
- Operating instructions in German and English language
- Factory calibration certificate
- Dust protection cover

Options

- Other pressure transmission media
- Piston connection with ConTect quick-release connector or M30 x 2 female thread
- Systems with increased accuracy to 0.006 %
- Other pressure units
- Mass set manufactured to local gravity
- Set of fine increment masses
- Storage case for the base and the piston-cylinder system
- UKAS calibration certificate
- Combination with CPS/CPM5000 series units possible (please contact the WIKA sales team for further information)
- Storage case for pressure balance CPB5800

Ordering information

Instrument base
CPB5800 / Pressure transmission medium / Instrument version / Connection of piston-cylinder system / Mass set / Piston-cylinder system / Installation of CPU6000-S CalibratorUnit sensor technology / Storage case / Additional ordering information

Piston-cylinder system
CPS5800 / Accuracy / Gravity value g / Measuring range / Connection of piston-cylinder system / Storage case for piston-cylinder system / Calibration for piston-cylinder system / Additional ordering information

Mass set
CPM5800 / Pressure unit / Gravity value g / Standard mass set / Set of fine increment masses / Calibration for standard mass set / Calibration for set of fine increment masses / Additional ordering information